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INTRODUCTION

This report studies microwave backscattering from a for-

est canopy. The canopy is modeled by lossy dielectric discs

having random orientation. Explicit expressions are derived

for the horizontal, vertical and cross polarized backscatter-

ing coefficients. The results are then compared with experi-

ment.

This work was motivated by the need to relate radar re-

turn to the characteristics of the scattering objects. The

"situation is particularly complex in the case of vegetated

terrain which consists of an ensemble of many highly irregu-

lar objects placed in a more or less random fashion. Using

! I the scattered return from a vegetated terrain one would like

to obtain such information as hLight, density, average leaf

and branch orientation so that the vegetation can be classi-

fied. This type of information is important for military

analysis of the terrain. In addition, if he terrain has

been deterrli..ed adequately from an electromagnetic point of

view, the backscatter information can be used to predict ra-

dar returns at other angles and frequencies not measured.

This would be of great aid to the development of manageable

data bases for radar simulations.

The above applications have served as a motivation for

the development of electromagnetic models for the vegetated

terrain. These models have been constructed by replacing the

vegetated region with a random medium whose statistical char-

acteristics are related to the physical quantities of the

medium. The models can be divided into two categories:



continuous and discrete. In the continuous case, the vegeta-

tion is modeled by assuming that its permittivity e(x) is a

random process whose moments are known. The average back-

scattering cross section is then calculated from a knowledge

of the statistics of F (x). Usually it is only the mean and

correlation of the permittivity that are required. The anal-

ysis of the problem proceeds by first calculating the mean

wave in the random medium [Keller, 1962] and [Tatarskii and

Gertsenshtein, 1963]. The mean wave allows the characteriza-

tion of the vegetation by an equivalent dielectric constant.

The scattered field is then calculated by using single scat-

tering theory in this equivalent medium - a technique employ-

ed by Rosenbaum and Bowles [1974]. Particular applicaiton of

the method to vegetated medium has been made by Lang [1974], Hevenor

[19761, Fung and Fung [1977], Fung and Ulaby [1978], Fung [19791, and

Zuniga, et al,. [1979]. The theory is scalar in origin and

thus does not provide cross polarization information. In ad-

dition, a correlation function for medium fluctuations must

be assumed. As yet the detailed structure of this correla-

tion function has not been related to medium properties.

In this report, we have adopted the alternative approach

- modeling by discrete random media techniques. Here, the

individual objects - such as leaves - are characterized by

their scattering cross sections or dipole moments. Each ob-

ject is then given a random placement and orientation. The

analysis proceeds in a similar manner to the analysis of the

continuous case. First the mean wave in the medium is found

by using techniques developed by Foldy [1945], Lax [19511,



Twersky [1962], and Keller [19641. Ther an equivalent die-

lectric tensor is found and the backscattering is computed by

* using single scattering in the equivalent medium. In appli-

cations for vegetation modeling, the method has been used

previously by Lang and Sokolakis [1979] for spherical scatterers. We now

extend the method to arbitrary shaped scatterers. Now we

find that the equivalent medium is anisotropic in nature.

This leads to zeroth order depolarization of the incident

wave. In addition, the backscattaring coefficients are ex-

plicitly related to scatterer volume and dielectric constant.

Previous work using discrete scatterers to model vegeta-

tion has been done by Du and Peake [1969], but they employed

single scattering (Born approximation) without introducing an

equivalent medium. Thus they did not take into account the

decay of the incident wave in the vegetation. This limits

their theory to much lower frequencies and thin layers of

vegetation.



PROBLEM FORMULATION

Consider the problem of scattering of time harmonic

electromagnetic waves from N discrete scatterers located in

a volume V as is shown in Figure 1. The particles are all-

identical and each has volume V , relative dielectric constant

e and free space permeability ,0 It is assumed that the

background medium is free space having permittivity E0 and

permeability 10*
Sth

The position of the i particle is specified by the

vector Xi extending from an origin 0 to the center of that

particle. The particle's center is located by the center of

the smallest circumscribed sphere in which the particle can

be placed. Although the particles are identical they have a

rotation with respect to a fixed direction. The rotation for

ththe i particle is specified by £_i(®.,¢i) where 0i and Pi

are polar and azimuth angles respectively with 0<0 <7T and

0<1. <2a.

The electric field obeys the vector wave equation

VxVxE - k02E(x) E = iw•0 J
0 r 0 ~ 1

-i~wt

where a time dependence e has been assumed. In (1) k0

E.0 W 1is the free space wavenumber and J is the current

density of the source. The relative dielectric constant

£ r(x) can be expressed in terms of individual particles by

employing translations and rotations of the particle located

at the origin. Let us assume that a particle located at the

origin is characterized by the function U(x) where
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Figure 1 Distribution of particles within volu=,e V
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U (x) p(2)

*Using (2) we express e r (x) as

N
Cr(x) =1 + A 4Z U (x-X.,Q., A e r- -1 3

where

U~,~ =U(R(P,) -x) (4)

Here U(xj2) is the function U(x) rotated by ~2and R 0) is a

* rotation dyadic.

we will find it convenient to express (1) and (3) in a

more abstract notation. We have

N
(L V-L- _ 5

where

L=VxV:cI-k 2 1(6)

V.= k 2AU(x-X., )I _ g iwii (7)

Here I is the unit dyadic and _q~ can be viewed as a normaliz-

ed source term. At times it will be convenient to write

E(x) = E (x) + E (x) (8)
_0 -S

where EO(x) is the solution to (5) when no scatterers are

present, i.e.,

and E s(x) is the scattered field from the particles.

6



SINGLE SCATTERER - TRANSITION OPERATOR

Before considering the N particle scattering problem, we

will consider scattering from one particle located at the

origin. Putting N=l in (5) with XI=0 and Qi=2, we have

(L-V)1eg 2 7(,Q (10)(=-V) e= _ , V= Ak•0U•xQ)__(0

where

e =e0 + e , Le0 = (1i)

and e iE outgoing as 1x.2-*0. We have used the small e nota-
-s

tion for the field here to remind us that there is only one

scatterer present.

If we use (11) in (10), we obtain
L-e = V-e (12)

From (12) we see that the term on the left, V'e, can be view-

ed as the source of the scattered field. We write

SV'e (13)

where 5eq is an equivalent source term. Since _=0 when
XgVp, the sources, geq' exist inside the particle boundaries.

p .e

It is more natural to think of the equivalent sources as

being caused by the incident field e 0 . Because Maxwell's

equations are linear, we can write

qeq = t (14)

where the dyadic operator T is known as the transition opera-

tor in the scattering literature [Lax, 1951). Now using (131

and (14) in (12) and multiplying through by L-, we have



e - , -e (15)

Thus the knowledge of _ completely characterizes the scatter-

ing properties of the particle. The operator ' is related to.

the dyadic scattering amplitude of "--he particle and for dipole

scatterers ' can be determined from the polarizability of the

particle. Thus T is directly connected with quantities of

physical interest.

The transition operator is a linear bounded operator and,

as a result, can be expressed in integral form:

- eq (x) = T-• = fax't(x,x')- ao(x') (16)

where the limits for the integral extend over all space. One

can show that t is 0 when x and x' are outside the particle

[Frisch, 1.968], i.e.,

t(x,x) = 0 , XVp or x'•' (17)
_p - p

The property follows directly from the fact that the equiva-

lent sources for the scattered field are located within the

particle boundaries.

We. will now represent t in terms of plane waves. The

representation of t can be directly related to the dyadic

scattering amplitude. We proceed by representing e 0 (x) by

its Fourier transform, putting this in (16) and taking the

Fourier transform of (16). We obtain

*•e(k) =/ dk'•(k,k'); "(k') (18)

where

t~~k~~k')( 1 f,, k x-k' -x') (9

(270)

in (18) we have used the notation that h is the Fourier

-- _--&•



transfor-m of h.More specifically

11.(k) Jdx h.(x) e -i

Inverting (19) the transition kernel t can be expressed in

terms of its plane wave representation ~

t(x,x') - fdkS dk' (k, K-) e~ (21)

The dyadic scattering amplitude will now oe defined.

Consider a plane wave incident upon a scatterer lccated at

the origin. An arbitrary plane wave can be decomposed into

zwo mutually orthogonal linsarlý. polarize~d plane waves. The

polarizaltion dicections are taken as a* and S* where a' and

V0 are orthogonal unit vectors with a' and $' being perpen-

dicular to the direction of propagation. The two incident

waves are

2e0 (x,i;q) = -~e k 0 {aS}E (22)

where i is a unit vector in the direction of incidence-,. It-

is more convenient to consider both polarizations siLmultan-

eously so we intzoduce the dyadic incident wave [Twersky, 1967]

e (x, i) =to(X, i; a) 2 + to(X, i;)S (23)

ik i-X
= (a 6 iie 00 (25)

Th~e dyadic scattered field from the particle i., given by

e (x,i) = e5 (X,i"a)a 0 + C.-(x,i;5)B0 (26)

where e (.x,i.;q) is the scatterad field due t~o polarization q.

The dyadic scattering amplitude, f, is defined in terms of the

asymptotic expression for e_ in t-he radiation zone. We have



iko{.•

e (x i) f(0,i) - -0 (27)
=S - - I 2E I

where 0 is a unit vector in the x directibn, 0_x/IxI.

The relationship between f and t can be found by employ-

ing (15) for large IxI (Appendix A). The result is

f (0,i) = 2 (1-0 0) -t-(koO, k0i) (-i_ i) (28)

From this relation, we see

0 " f = 0 , f*i 0 (29)

Thus f is a four component tensor - all combinations of two

incident polarizations and two scattered polarizations. We

also note that f does not completely determine t but only

partially specifies it. In particular, a knowledge of f for

a free space wave nunber k0 only determines t(k,k') at Iki =

jk' I=k 0 ; also only four of the nine components of t in the

polarization directions are determined.

Before concluding this section, transition operators for

particles not located at the origin will be needed. As before,

the equivalent sources (i) for a particle located at X. can
eq -

be related to the incident field. It follows that

()= f x' x')dx'

By shifting the sources and the incident field to the origin

t. can be related to t. One finds

t.(_,x) = _(x-Xix'-xi) (31)

Note that throughout the discussion the dependence of t on

rotations has been suppressed for convenience of notation.

10



COHERENT FIELD

In this section we will develop an approximate equation

for the coherent field by employing the Foldy approximation

[Foldy, 1945]. The equation is in terms of the transition

operator and thus, when the scattering amplitude is known,

the equation is completely specified. After the equation has

been derived it is pointed out that outside V the coherent

fields obeys Maxwells' equations with free space permittivity

and permeability. Inside V, the coherent fields obey Maxwells

equations with free space permeability and a macroscopic per-

mittivity that is inhomogeneous, anisotropic and spatially

dispersive.

Before discussing the coherent field, the statistics

that govern the particles position and rotation must be specified. It

will be assumed that the position vectozs Xii i=l... N and ro-

tation vectors Qi' i=l..N are random variables that are spe-

cified by a 5N dimensional distribution function. In addi-

tion, it is assumed that interchanging particles leaves the

distribution function unaffected. From this general distri-

bution function we can obtain the probability density func-

tion for the i th particle. It is

PX. 2 . (xw) = Px ( 'xw) i=l .... N (32)

where w=(e,r). In (32) we have explicitly noted the fact

that the particles are identically distributed by omitting

the index i on the left hand side of (32). We will assume

that the particles location and rotation are independent, thus

px ((x,,) = Px(x) pQ (w) (33)



with the usual property-

Jfd = f4 px(d1 =_

The particle density is defined by

p(x) = N px(x) (35)

so that

Sp(x)dx = N (36)

In addition to the one particle density - when treating the

correlation of the field - the two particle density will be

required. We have

X, x,•,•) = Pxx^(x,xx, W) = pxQ(x,_)pX5(xW) (37)

i,j = ... N
.th . th

In (37) we have assumed that the i and j particles are

independent. The independence assumption is valid when the

particles are sparsely distributed; the case we intend to

treat.

We will now develop the approximate equation for the

coherent field. We start by noting that the total field E

can be thought of as a sun of the incident field E0 plus a

sum of the fields scattered from each particle, EsW We

have

N
E=E + . E(i) (38)i=l

thThe total field incident on the i particle is called the

effective field and is denoted by E(i). Thus T. .E(i) repre-

sents the equivalent sources generated by the incident field

in the ith particle and



E L T.-E (i) (39)-- S = =j --

Using (39) in 38), we have
SN • (i) (0

E 0 + Z L -. T.-E 40)S--j=1 = =2.-

This is the equation that we wished to obtain.

Now we average this equation. The result is

N
<E> = E0 + z L- 1<T. E (i) (41)i=.

To obtain an approximate equation for the mean we follow

(Foldy, 1945] and assume

E(i) = <E> (42)

This means that the random quantity E (i) is to first order

equal to a deterministic quantity, i.e., to first order it

is a ergodic quantity. Using (42) in (41) and noting that
Ci)

<Ti'E_) >-<T.=<E>>=<Ti>-<E> we have the approximate equation
=i=. - =i -

for the mean field

N
<E> = E +<Ti> <E> (43)

0- i=l -! -.

Denoting explicitly the dependence of T. upon X" and Qi, av-

eraging and then using (33), we have

< Ti> <T(X.i, Q.)> f ds d_ pX SW)T(s,)

-/- -2. . [I
=f ds p (S) (44)

V

where

T(s) = c pQ(w)T(sw) (45)
47T

In (45) the bar over T has been used to indicate an average of



angular varies only. By putting (44) in (43), by noting that

the cattered terms are identical and by introducing q(s) via

(35), we obtain

<E> = + f ds p(s)L1 )<E> (46)

Multiplying from the left by L and using (9), we get

g (47)

where

S= L - f ds p(s)T(s) (48)

This is the equation for the coherent field.

The arguments that have led to the approximate equation

(47) have been largely heuristic. The essential approximation

is contained in (42) where the effective field is assumed,

approximately equal to the average field. Although we will

not discuss the conditions under which (42) is valid, it will

be shown elsewhere that the approximation is valid when the

fxaction of volume occupied by the particles is small com-

pared to the total volume, i.e., NV,/V<<l. We shall refer to

a distribution of scatterers satisfying this condition as a

sparse aistribution.

Before proceeding we will write the equation for the mean

in more concrete form. Using (30) and (31) in (47) and (48),

we obtain

L-<E(x)>- f dsfdx' p(s)t(x-s,x'-s) "<E(x',>= g (49)

where

t(x,x') f dw p()t(x,x';w) (50)

.4 Tr . T.'.



Here the kernel t(x,x';w) is the same as given in (31), how-

ever we have explicitly shown its dependence on the angular

coordinate w.

We can now use (49) to obtain a macroscopic form of

Maxwell's equations. First averaging the Faradary's law

equation; we have

Vx<E(x) > = icui 0 <H(x)> (51)

"Then by using (51) in (49), we obtain the macroscopic Ampere's

law equation.

Vx<H(x)> = J - iw<_ , <D> c < _ (52)

when E is a macroscopic permittivity operator which describes

the average behavior of the medium and J=g/1iwI 0 ). it is

E = I +- ds fdx' ((s)t(x-s,x'-s) . (53)
k2Vk0v

This expression simplifies to I (free space) when xXV. To

see this we note that when x,'V, we have x-sieV since s.V.S• • p

Now using (17) we have t=O. When xcV (47) does not simply

in general. It describes an anisotropic, inhomogeneous, spa-

tially dispersion medium.

Let us examine how (53) reduces to some more familiar

expressions in some special situations. We will assume that

V is infinite through the remainder of this section. First

we will consider the case when the density is constant, i.e.,

p(s)=Q. In this case the permittivity is translationally in-

variant or homogeneous. To see this we substitute (21) into

(53) and we perform the integrations over s and k'. We ob-

tain

15



C + .. fdk. e

when r k(kk) f dwt ())(k,k';) (55)

4 7r-

Since the integrand is a function of x-x' the permittivity is

translationally invariant however it is still anisotropic and

spatially dispersive.

Another special case of interest is when t is scalar,

i.e. t(x,x') = t(x,x')I. This occurs when the scatterers are

spherical. Then the permittivity is isotropic but inhomo-

geneous and spatially dispersive.

The last special case to be treated is when the wave-

length is large compared to the size of a scatterer. Here

the particle can be treated as an electric dipole. Its equi-

valent source distribution is given by

-1eq = il0J.eq = iW1 0(-iw26(x)) (56)

where p is the ele-tric dipole ncnent of the scatterer and 6 (x) is the

Dirac delta function. The dipole mrTent is relatea to the incident field e0 by

the polarizability tensor a [Jones, 1964]

p = F0  _'*-0 (57)

Using (57) in (56) and comparing it with (14), we find

T = kg6(x) (58)

or

2t_(x~x') = k -• x 6( '(9

Now putting (59) in (19) , we obtain

2 (60)
ý(kk') .k a/(2r_0

16



Thus we see in the dipole limit t is independent of k and k'.

Since we have an expression for t in the low frequency

or dipole limit, the special form of c can be easily obtained.

Using (59) in (54), we find

= I + p(x)E (61)

Thus in the low frequency case, the permittivity is no longer

spatially dispersive however it is still anisotropic and in-

homogeneous.

mmA



CORRELATION

In this section we will calculate the correlation of the

electric field. Rather than following procedures used to find

the coherent wave, the distorted Born approximation will be

employed. This is a single scattering approximaticn where

the scatterers are assumed to be embedded in the equivalent

medium which has been found in the previous section. The

method is useful when the fractional volume is small (NV p/Vl<I)

and the albedo of a single particle is small. The later con-

dition implies that the energy absorbed by a particle must be

much larger than the energy scattered by it.

We start by considering a volume V of equivalent medium

surrounded by free space. There are N particles embedded in

V as shown in Figure 1. The scattered field due to the 1th

particle can be calculated by modifing (39). We assume that

the incident field on the particle is the mean field <E> and

that the free space operator L is replaced by the equivalent

medium operator • as given in (48). We have

N (i) N
E E -T "<E> (62)

s i=l i1 = --

Before proceeding, we point out that our main interest

in finding the correlation of the field is to use it to cal-

culate the backscattering cross section. Since this cross

section is related to the correlation of the field fluctua-

tions, we now define

Ef = Es -- <E> <E > = 0 (63)

Now computing the correlation of the fluctuating field, we

obtain



II

-Ef(X)E_ (X)> = 'E- (X)E*(X)> -<E (X)><E*(x)> (64)
f-s -- S - -S - s -

where z* is the conjuc te of z. Putting (62) in (64) and no-

ting that a portion- *)f <E E*> cancels with <E s><E*> if we use

the fact that N>>». We find

f A^ 4 7T<E~f(x) Ef(x)>_ = J _ p2 (•)<Ef(x)E~f(x)>_ _ (65)

where

<Efx(x)Ef(x)> => ds p(s) x(x,s)S*(x,s) (66)
- V

with

_(_x, S) T=). (67)

here we have separated the average into rotation and coordi-

nate space averages, thus introducing the conditional expecta-

tion, <EfE*>, with respect to given w.

To write (67) more explicitly, we introduce the dyadic

Green's function _(x,x') for the operator '. It satisfies

_-9(x,x') = IC(x-x') (68)

+ G - outgoing as

where & is given in (48). Now (67) becomes

E (x, S) = j.d2ý 1(x,x') j~d2Xit t(x'-s, ~~s)-< E (xht) > (69)

The expression simplifies greatly in the low frequency limit.

Assuming that t is given by (59) and using this in (69) gives

S(x,s) = k2_9(x,s) 2'<E(S) > (70)

,-0-



BACKSCATTERING COEFFICIENTS FOR A HALF SPACE OF DIPOLES

To illustrate the application of the methods developed

in the previous sections, we will calculate the backscattering

coefficients from a half space of scatterers that are small

compared to wavelength. We will alsp assume that the density

of scatterers p is constant. The physical configuration is

shown in Figure 2. There, we have shown the direction of the

incident wave and the polarization vectors hO and vO repre-

senting horizontal and vertical polarizations respectively.

To compute the scattered field using the distorted Born

approximation, we must first calculate the mean field in the

half space containing the particles. In the low frequency

approximation the mean wave is computed by replacing the par-

ticles with an equivalent medium having relative permittivity

tensor e=I+p a and free space permeability p. The usual con-

tinuity conditions associated with maczoscopic Maxwell's

equations are assumed to hold at the interface z=O.

Before proceeding we would like to emphasize that the

scatterers are sparsely distributed or that the fractional

volume they occupy is small (NV p/V<<I) - a condition necessa-

sary for the validity of the mean equation. This restriction

is reflected in the equivalent permittivity tensor. Small

fractional volume requires that JP ijci<<l where Zij are the

component, of g. We can exhibit the dependenc-e of this con-

dition on the fractional volwne (NV p/V=Vp explicitly h1 in-

troducing a normalized polarizability tensor a as follows:

a = a/V (71)• •!Vp
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Figure 2 Incidence wave on half space of uniformily

distributed particles
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where we can show that the components of a remain bounded as

V ÷-0. Now the permittivity can be written as
p

= I + 6a (72)

and thus we have a small parameter for ordering purposes.

Although we are able to carry out the calcualtion of the

mean wave for an arbitrary average polarizability tensor •,

it is convenient to partially specify the angular probability

density, p,(w) in order to make a diagonal. First we choose

a spherical coordinate system of mutually orthogonal unit

vectors r 0 , e and -0 The position of these vectors is com-

pletely determined by the spherical angles e and 0 as shown

in Figure 3. Now we align the principal axes of the scatter-

er along these unit vectors. Then we write

= ar r~rO + a,2060 + aiopoq (73)

By using the usual transformation between spherical and car-

tesian coordinates, (73) becomes

3 3
S= 7. a (8,O)xxi? (74)

i=l j=l ixj

whiere xl=X, x 2=y and x 3 =z and xl,•v and z' are cartesian unit

vectors. The relationship betwen the axx and. a r 'a e'a are given in Appendi

Now assuming that the random variables 0. and t are in-

dependent, we write
PQ• e~}¢¢ (75)

Averaging (74), we have

3 3
• a = 7. a" x~x°.I ?,

• , i-.1 j=l X.J Xj-1-3

"where
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-a x d d ( (610) (77)

xixi 10 0 xi J

We will now assume that the particles are distributed

uniformily in the ( variable, i.e., p,(:)=l/27. We find

a = a ±x a yo~ z~z0  78axxx xy +O + az zz (78)
_ yy_ z-- -

where

2 2
axx a -yy = f[ar sin .+ a Cos e + a (79)

a = a Cos 26 + a s n (80)
zz r e

Thus all off diagonal terms averaged to zero and two of the

on diagonal terms are equal. Using this in (72), we see that

the equivalent dielectric is uniaxial.

The mean wave in the equivalent medium will now be found

for the case of particles uniformly distributed in the azimuth

coordinate p. The incident wave is given

E0 (x,q) = j~eik-x qc {h,v) (81)

where

k = kt0 + k z00 , (82)

with

=ksin60_ , k = k0 cose0  (83)

and the polarization vectors are

ho0 = y_0 , _v= -cos6 0 x0 + sineo.z (84)

The average electric field in the equivalent half space satis-

fies
[-x(Vxl) 2 0 , z<0 (85)

Let us assume a plane wave solution of the form



<E(x) >= A ei- i" (86)

where < =< + < zl. In order to match fields at the inter-

face, the transverse phase velocity of the incident and trans-

mitted waves must be the same, thus Kt=kt=k 0 sinx0 xE. Putting

(86) in (85) , we have

K X(K XA) + k2 A k2-. = 0(87)

Representing A in cartesian components (87) can be written asi2 2
K -k08x 0 k~sineK< Ax
Kz 0k 0 0

0 K 22 Ay = 0 (88)Z 0 yy

k0 sin00 K 0 -k02 B A
L 0 10 z 0 zz L

whereI2 2xx =1 + 6= CosG 0 + 6a , = cos + 6a

(89)

Since (88) is a homogeneous system, the determinant of coef-

ficients must be zero for a solution to exist. This condition

determines the allowable values of K We find

Kz ± z ++k 0/$y (90)

+ (z -z xx zz (91)

where the superscripts h and v have been used to designate the

propagation constants associated with horizontal and vertical

polarizations. For an incident wave that is not grazing, i.e.

- 0 iTr/2, expressions (90) and (91) can be simplified using the

small 6 parameter. We have
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(h) k(cose0 + + 6 (92)
z = \ 0 cos_ /

S[c~~ -%+O 2 -(x-azz)2

K (v) = k0 [cs60 + 5 (a ±os (a axa zz + 0(-2) (92 )

We cannot calculate these propagation constants to higher ac-

curacies than 0(6) since! the original mean equation has only

been found to this accuracy. We note that since we are con-

(q)
sidering lossy particles, the K are complex and thus the

mean wave will decay away from the interface.

Next we calculate the amplitude coefficients for the

mean wave of both polarizations. We have

ikzz _ikzz ikt -

(e +r he a)e z<0
<E(x,h) > =(94)

i< (h) .-x
Ae -- z>0

and

ik• Z -i kz ik --
(e -°+fve 0 )e v° Z<O

<E(x,v)v> (95)

(A x+Azz e*)e (- , z>0

where we have introduced a reflected wave in the free space

medium at the specular angle. Now by using the fact that the

tangential <E> and <H> must be continuous at the interface,

the unknown reflection and transmission coefficients can be

calculated. Since the major effect of the equivalent medium

is to produce exponential decay, we next expand the coeffi-

cient for small 6 and we keep only zero order terms. We find

that r q0(6) and thus it can be neglected. The transmitted
qM- 1__ .f



mean fields are:
i(K (q)_

Si (< z+k •*x)•• ~z --t 0-

* <E(x,q) > = g~e + 0(6) , z>0 (96)

qe {h,v}

Proceeding with our developemnt, we now relate the transverse

Fourier transform of the correlation to the backscattering

coefficients. This is done within the context of the distor-

ted Born approximation developed in the previous section. We

start by taking the transverse Fourier transfcrm with respect

to x and x of (65), (66) and (70) We have

~( z _t f z >w (97)
<Ef (ktz)E*(kt'z)> J dL p (w)<Ef(ktjz)E(t

<Ef(kz)Et.(k= z)> ds (kt,z,s) E*(kt ,z,s) (98)

where

£(kt,z,s) =t (99)

Since we will only require G when x and s are in the equivalent

medium and since the reflection at the interface is small we

can replace G by the dyadic Green's function for an infinite

equivalent medium, i.e.,

9(x,s) (-)(x-s) + 0(6) (100)

We have written the infinite space Green's function in terms

of x-s since it is translationally invariant. We then have

_"' (ktz,s) = _) (kt,z-s)e -" - (101)

Now by putting (96), (99), (100)and (101)in (98), by integra-

ting over st and by setting z=z=0, we have

<E (kt,0)E*(kt,O)?> = S(kt,qjfw)6(kt-kt) (102)

where



(27,) 26k4V f COds''G (kt -s) a'a0 ) (G (k) -s)

-2iMK (q) s
•a*. q*) .eZ (103)

Here S(kt,qli/) is the transverse dyadic spectral density at

the interface assuming w is fixed. The normalized polariza-

bility has been introduced by using (71).

By using the results of Appendix C and by noting that

S(k we obtain the backscattering coefficients

2 2k cos e_
a 0- 04 0 *a (-_,k q )w).pO , _,qg {h,v] (104)

pq 0T

To evaluate the integral of _ in (103), we will need the

transformed Green's function. To obtain it, we first write

the governing equation for _ (.) It is

[Vx(VxI) - k02(I+61) G ] (x) = 16(x) , (J.05)

(-(x) - outgoing as l

Using
z(CO (x) fd -X
_ (x)_ =_< f g (K_)ei -- - (106)

(2iT)

in (105) we find

k (I+6A)].g(K) -1 (107

Then

- (K ,( ) 1P fdK g(K)ei< -x (108)

To simplify the remaining computation for we note from

'104) and (103) that will only be required for
0

-k 0sin8 0_.

Inverting (107) and performing the integral in (107) Ly

the method of residues, we obtain



(v)$Z7sine0Kz 
a (z)

2ix0 )2i 21K.() O (09

G(•(-kt z)= xo + (x*zO~~o

z0

(v) 2 _< v) ((h)

andth ~ ae(efne in0x (8). Apoimating th coefi

cn t z o i z, zwe he sml z expression
"""2K (v) (h)k 0  2i+ z (11

where

S1 , z>0
Cr(z) =(110)

and the u's are defi in (0 (89). Approximating the coeffi-

cients to zeroth order in 6, we have the simplified expression

i1C(v) Izl iK (h) izi
~e z e z

G(• (-kt_ , z) = •°v"2ikcVs + _h~h° iO os0. . (111)

If we use this in (103), perform the integration and use

the result in (104), we have our final fcrm for the backscat-

tering coefficients. It is

6k4 V -j

aC0  - .p pq (112)
Pq 87(ImK(p) + ImK(q)

z z

where

( 2 f w(113)a
pq 2 /4 - -_ ='0 1 (113)

and K(S), se{h,v} are given in (92) and (93). The dependence
z

of a Ipql on angle of incidence is worked out explicitly in

Appendix B for scatterers that are distributed uniformly in

the ý coordinate.

The final result given in (112) can be expressed in terms

of scattering cross sections of individual particles. Using

(28) , (60) and (71) , we have



f = pof.qO 2r2 2 = k2V a /4Tr (114)

pq P-pq Op pq

Now by recalling that the backscattering cross section from

a particle a (b)= 41!f p 12, (112) becomes

PC(b)

pq (q) p,q£ {h,v} (11511 Pq 21mro• +21MK

Following Attema and Ulaby [1978] we can give a one dimen-

sional interpretation of (115). If we rewrite (115) as

0 -21MK (q) [z, -21MK(p) I Z

•pq dz p;(b) e z e z (116)

pg -00 pq

we can view the scattering as being decomposed into scattering

from slabs of width dz. An intensity of exp(-211K q) Izi) is

incident on the slab located at z. The incident intensity is

backscattered with reflectivity factor p (b) The backscat-

":ered wave then decays as exp(-2MK(q) Izi) until it reaches

the interface.
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DISCUSSION AND NUMERICAL EVALUATION

In this section, we will first discuss several general

properties of aO that are independent of the particular scat-
pq

terer chosen. Following this discussion, we use our method

to model a forest canopy by a collection of lossy dielectric

discs. The theoretical curves computed from this model are

then compared with some experimental data.

Because of the simple dependence of ap on the medium
pg

properties and incidence angle certain general observations

can be made that are independent of the particular nature of

the scatterer. First, we note that CO as given by (115) is
pq

independent of the density of scatterers p. This follows di-

rectly from (92) and (93) where we see that the Imra(S) se{h,v}
z

are directly proportional to p. Thus the linear p dependence

in the numerator of (115) is cancelled out by the denominator.

Second, we note that aOhh cose 0 . This is the same result as

predicted by the scalar theory. Finally, we note that a* =a
11h vvY

at normal incidence (60=0). This is an expected result. Since

the scatterers are uniformly distrinuted in 4, the two polari-

zations see the same medium at normal incidence.

We now proceed to model a forest canopy by a collection

of leaves. The leaves are in turn assumed to be lossy dielec-

tric discs as mentioned previously. The discs have radius a

and thickness h. Typical dimensions are radii of one to sev-

eral centimeters and thicknesses of tenths of a millimeter.

The electrical properties of discs can be characterized by

their nornmalized polari7ability tensor a when the wavelength

is large compared to the disc. From Jones [1964] and



Van de Hulst [1957] the polarizability of a disc along its

principal axes is given by

a a
a r l a =a =A (117)

r p l+L r

when r,e,ý are defined in Figure 3.

Because of the large volume of water present in vegeta-

tion, we can usually assume e r>>l in the microwave region.
r

Using this assumption in (117), we find that jaOI=la i>>Iari.

This inequality can now be used to simplify the scattering

0 2
cross section of (115). We find that a7 Er V /ImE

pq r p r

Thus it follows that the magnitude of the backscattering cross

sections are directly related to the volume and complex die-

lectric constant of the discs in a simple manner. Therefore,

as leaves grow and as their moisture content changes these

effects should be observable by measuring a' at different
pq

periods of the growing season.

Before computing the backscattering cross sections as a

function of incidence angle, we will require the relative di-

electric constant of the leaves and the angular distribution

of leaves. First the relative dielectric constant is considered

Our calculation follows that of Fung and Ulaby [19*78] who in turn have

based his results upon de Loor [1968] and Carlson [1967].

They m(udel the leaves as a mixture of water and solid materi-

als. For illustrative purposes we have chosen 50% water and

50% solid for our calculations. By using (3) and (4) of

Fung and Ulaby [19781 at a frequency of 1.1 GHz we find that r

30.8+il.8. our choice of frequency has been motivated by experimen-

tal results that appear in the literature. We have chosen to



compare our results with those of Bush, et al [19761 who has

measured pq, p,cq {h,v} from forests for frequencies 1-18 GHz.

Because of the dipole approximation made in our model, only

the lowest frequency (l.laiz) Ulaby measured was used for

comparison purposes.

The angular distribution of leaves will now be considered.

Field measurements of leave orientations have been made by

Smith [1973] and others. It has been found that the leaves

are distributed uniformly in the 4 coordinate (Figure 2). The

distribution of leaves with respect to 0 is more vegetation

type dependent. Several are given by Smith [1977]. Since

no measurements of this type exist for the Ulaby data, we

have assumed that P is uniformnly distributed. For 0 we have

considered the following two densiry functions:

p (/)/= (118)60 o< e< A e//
0 A8 Ul

or

(1 T,_A <+e

2A ej r rA~<+e
p()= (119)

0 , elsewhere

In (118) when A6 is small, the lec.ves are approximately

parallel to the interface (z=0); when 4e/ =7/2, they are un-

iformly distributed in 0. In (119) when AO is small, the

leaves are perpendicular to the interface; when 4A is* T/2

they are uniformly distributed in G.

The numerical calcualtionc are presented in Figures 4-9.

In these figures the backscattering coefficient is plotted as

a function cf the angle of incidence 8 0. In Figures 4-7 we
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have used the angular distribution given in (118) while in

Figures 7-9 we have used (119). Figure 7 corresponds to a

uniform distribution over all e and thus, for this case,

(118) and (119) give the same results. One should note that

since I ri>>l, a change in f, Vp or er just shifts the level

of the curves but it does not change their shape. Their shape

only depends on pe(G).

The following trends are observed in Figures 4-7: First,

0hh is always greater than * . Their difference increases
wv

as A6 becomes smaller. Second, the cross polarized back-

scatter becomes smaller as Ae becomes smaller. In Figure

7-9, we observe that: First, co becomes greater than a* as

Le is decreased; second, the curve for ah tends to flatten

out as A6 is increased; and third, the difference ahh-T hv at

e0=0 becomes smaller as Ae increases.

A comparison of our theory with the experimental results

of Bush, et.al [1976] is made in Figure 10. There, we have

plotted our Figure 8 along with his data for Kansas deciduous

trees measured in the springtime at a frequency of 1.1 GHz.

Figure 8 was chosen since it most clearly appears to follow

the trends of the data i.e., flat cross polarization and a* >

hh"

Although our theory follows the trends of the data, it

is clear from the results that additions to our model .should

be made. The fact that ao; 'vv is most likely due to the

vertically oriented tree branches other than" due to the leaves

that tend to be parallel to the interface. In addition, an

examination of the numerical results shows that the skin depth



for the mean wave is large. Thus at a frequency of 1 GHz the

underlyin9 ground should be taken into account.

A



CONCLUSIONS AND RECOMMENDATIONS

We have developed and analyzed a discrete scattering

model for vegetation. The model replaces the vegetation by

simple scattering objects such as discs, spheres or rods so

that leaves, branches and trunks can be modeled. The objects

are given random placement and orientation in order that the

complicated features of the individual scattering objects are

averaged out and simple expressions are developed for the

backscattering coefficient3. The model directly relates the

backscattering coefficients to easily measured medium param-

eters such as leaf size, density and moisture content. The

theory as presented also takes into account depolarization

effects that agree with experinmental data.

At present only the leaves in the forest have been in-

cluded in this model and no effects of the ground have been

taken into account. We recommend: first, that the effect

of the ground be included. If this is done agricultural crops

can be modeled. Second, the numerical calculations indicated

the branches in forests will make an important contribution

of microwave frequencies. They can be modeled by dielectric

cylinders and averaged over position.

Finally we feel that the inverse problems related to the

above approach should be investigated. Questions such as:

Can the probability density function of leaf inclination angles

be determnined from backscatter data? Once the distribution

Sof incliration angles is known, forest or crop identification

will be much easier.
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APPENDIX A

Relationship Between the Transition Operator and the Scatter-

ing Amplitude

To find the relationship between f and t, we start with

(15). Using (23) and (26), we can write (15) in terms of

dyadic incident and scattered wave

e L T-e (1A)

Next we use (16) in (1A) along with the free space dyadic

Green's function I for L-. We have

e (x,i) =f x'P(x,x') x" t(x'") x" (2A)=s -- -- =f . .. . ,x eX1 0(_ , )( A

Here the free space dyadic Green's function is given by

ik 0 Ix-x' I

f(x,x') = (I+ ik (3A)

_0

To obtain e in the radiation zone, the far field expression

for 1' will be required. It is [Twersky, 19671

- i k o O . x ' I e i o i( A
F(x x') 0(I-00)e 0- e (4A)

Now putting (4A) and (25) in (2A)

e f '"tik 0(i-x" - O'x')

iko0 xl
_(I-ii) e (5A)

Finally employing (19) in (5A), and comparing w~ith (27) we

obtain the required result

-.(0 , i )_ = 2 T 2 ( - 0 (k 0,_k 0 i ) '( - i i ) (6A )

+J !'1 ! :.J



APPENDIX B - Polarizability Statistics

In this appendix calculate the mean square polarization

statistics used in (112). The calcualtion will be performed

with the assumption that the scatterers are uniformly distri-

buted in D.

First we derive the components of the polarizability

tensor in cartesian coordinates in terms of the princip;i axis

components. The unit vectors ro, _* and fO are related to x°,

* and z* as follows:

r* = sin~cospO + sinesinozO + cosSz*

V0 = cos~cosox* + cosesinzoy - sinSz* (1B 1

0 0 = -sinox* + cospox

Using this in (73), the cartesian components of (74) are:

axx = (arsin 28 + a cos28)cos 2 ( + a sin 2

a = (arsin 2 + a cos 2)sin 2 +a cos 2

S~2
a = a cos>@ - a sin 2
zz re

(2B;

axy = H(arsin + acos 28) - a ]cososino

axz =(ar-a) sin~cos~coso

ayz = (ar-a a)sin~cos~siný

The other components are gotton from the fact that a is a

symmetric dyadic.

Ncw we will obtain the components of a in the polariza-

tion directions in terms of the cartesian components. We

have using (84)

47



Yy

a,= h.a-v* -cose a +- sin6 av - Qyx 0Oyz

(3d)

2 .2a v av=aos c - 2CS iea + si-n 8a
-0 0x sO ~Oxz 0 Z"

Following this, the mean squar-e pol~azizabilitiles 'ai~e co~m-

-,puted. When we assume a8=a =a,=A and we use the appr6xiimation

that at >,-a r the~ mean square polarizabilities bevome

2 lat1 2 (3 -in 4e/8 + COS2 e]

lhI Ia'1  = IatJ2[sin 4eCOS26/8 + sin 2 cos2esin'e0/21

Ia~ [v12 !at'I2{(3-sin 4 /8 + CcOs46]COS 4 60 + Sin4e6sin 4 e 0

+ [2sin' B2 COS2 6 - si 4 + 2sin2 6jsin 2 60Cs70

.1 0 1



APPENDIX C Relationshid- Betwee,Žn the Backscatter.'.ng
Coefficients -nd the Transverse Spectral Density

We start by considering the fluctuating portion o' the

scattered field, E._, as defined in (6?' in the region z>(:.

This field can be viewed a•. arizing from sources on the in-

terface. So chat far field -uantit.:.es can be found, we ini.

tiBlly consider that portion of Ef that arises ftom sources
contained within a finite region A o-i the interface. The ra-

diated field from the region A will be denoted by _Ef (%,q).
A

The field E(x,q) can be related to the interface fluc-
"A

tuations by employing a plane wave expansion in the region

z<O. We have
-ik z+ik (x -x')

SE(xq i) f k dx (0,x ' z - - z< 0(-- ) (1- if ' ' <0

TJo-t

where Ef(O,xt q) is the fluctuating field on the interface

cuve to an incident wave of polarization q. The kt integral

in (lC) can be asymptotically evaluated for large !xI [Collin

and ýur.ker. 1969) . We find

-- c•_+ 0cosO0 + ikt0*EAx~q) f----e ', EIOx (2C)EfA -xq , ~ A q) -

where x has been specialized to the backscatter direction e0

and k is given by (83).• -to

""The backscattering coefiicierns er, now defined. They

are

"C4i 4 i x 1 (p,q)
00 = lim lira q,pn{h,v i C)

pg A-4 {x÷ AII (q)



where Ii(z) is the incidert intensity per unit area w:.thi po...

iarization a, I (p,q) is the average intensity aIt the obser-
s

vation point with polarization p due to an incident wave with

polarization q. in view of (82), 1i (q)=lo We also have

2

I s 'pq) = <I Ef (2x,q) .0! 2> (4C)

We can complete the development by first representing

the field on the interface by its Fourier transform, Ef(kt~q)-

E(0,xq) = 1 2 fEf(ktq)e t- dkI (5C)
(2 Tr7)

Now by using (2C), (4C) and (5C) in (3C), we have

0~c s 0  tpIjOK~
=lirr lirn f Jdk'dk" dxt dx" ofkq

A IxI).O 2 T~A x

3['Xt kt" xt+ktE* W_,qfxf- >e A -t -t t -to -t (C)

Nex<t we introduce the transverse dyadic spectral density

S(k tq)whicia is given by

<Ef(ktq)E*(ktq)> = S(k,,q) (k'-k") (7C)f-:-t f=t -t -t"

Note that this definition requires that the process Ef(kt~q)

be homogeneous or stationary in kt-

By using [7C) ia (6C) and carryirg out the integrations,

we obtain

k0cos 2 0
-q 4 ý-- Sp -k t0,q) (Sc)

where

S tktq) = p*oS(ktfq) C (9C)
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